If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(16x^2+64x+32)/352=0
We multiply all the terms by the denominator
(16x^2+64x+32)=0
We get rid of parentheses
16x^2+64x+32=0
a = 16; b = 64; c = +32;
Δ = b2-4ac
Δ = 642-4·16·32
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{2}}{2*16}=\frac{-64-32\sqrt{2}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{2}}{2*16}=\frac{-64+32\sqrt{2}}{32} $
| x=7,9-x= | | 5(n-3)-(6-4n)=8n | | 0.17n=400-n | | 1.3/x=4.94 | | 13/x=4.94 | | (1/x-4)-(3/x+7)=(11/x^2+3x-28) | | -15+t=-15 | | 13-13r+2+6r-2r-1=3+2.9 | | 1.4/x=5.2 | | -3=2/3y-19 | | 4n+7=3n-2 | | -2y-2-9=2y-8*4-3 | | x+.06x=31000 | | 3(8-2x)=2(7x-19)= | | 4^2x=83 | | (5x+2)^7/3=128 | | (7y+2)=8y-9+7 | | -5=10+3n | | -3+u=—20 | | 1.08x=399000 | | 7x-2.33=(-10) | | x+0.08x=399000 | | 6y=(-16) | | 3m-63=4m | | 100x=2/5 | | 100x=2.5 | | 5x+20-x=7(3+7)-3x | | 200=3.5r | | 5x+20-7x=7(3+7)-3x | | 0.2x+x=90 | | 5x+21-x=7(3+7)-3x | | 2x+5=9x-23 |